Advanced Update Order | Difficulty: 🟪

Logging off…

2 Likes

Well, at least I uh… HAVE A SMILEY FACE AS MY PFP

ha

2 Likes

THE BIG F IS USED IN MUSIC FOR FORTE AAAASIDIJSRBRIDIDUCSUDUDJW NC HDD DS LEKFKSLAJGUifo i is t pxk is uzu f I C

1 Like

MUSIC? MUSIC? I FIRST THAT IS NOT WHAT AUO IS ABOUT. WE WERE TALKING ABOUT MATH.

2 Likes

You’ve just summed up my pet peeve very well sir

2 Likes

why is one of the integrals sideways?

2 Likes

All in a days work, ma’am. Tips Beanine to giant lightning dragon

1 Like

image

1 Like

Logging off(for real this time though)

2 Likes

wait before i leave what else do you need to know @anythinger I can try to see tomorrow

2 Likes

Also why is everyone changing their names is it a new GimTrend?

1 Like

Yakko's World (song) | Animaniacs Wiki | Fandom

Just explain what integrals and derivatives are this is what I understood:
x → a f x-a (big f + 4)

Basically when a person explains it it’s better than Wikipedia or videos.

1 Like

Okay, tomorrow I’ll do my best.

2 Likes

Why has this post turned into calculus lol
Not that I’m complaining ofc

3 Likes

why are we even calling this big f, that has to be a little f

8 Likes

I know that when you said secant line you meant two points in a parabola, but wouldn’t the average rate of change for the whole parabola just be 0?

1 Like

Parabolas extend beyond bounds, so you can only take the slope of the secant line on an interval.

1 Like

zypheir time 861373262482636831

7 Likes

And if both points have the same y-value, then the average rate of change is zero. Makes sense.

To find the instantaneous rate of change, we can use limits. We may not be able to find the rate of change using one point, but we can do something else.

Let’s say Δx is an infinitesimally small number. It can be as small as it needs. For this guide’s sake, Δx can be 0.01.

Normally, average rate of change is in the form

Average Rate of Change = (f(b) - f(a))/b - a, where a and b are the starting and ending points on an interval, respectively.

We can approximate instantaneous rate of change by using an extremely small value plus the starting point of the interval, like [3, 3 + 0.01] to approximate average rate of change.

Now, when we take the limit so Δx (an extremely small value) approaches 0, and the average rate of change becomes this: (f(x + Δx) - f(x))/(x + Δx - x). This is the formal definition of a derivative.

Think about it like this: The smaller Δx becomes, the more accurate our approximation becomes. If we had Δx as 0.0000000000001, then the change in x would become small enough to represent as instantaneous rate of change.

1 Like